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Objectives

In this chapter, you will:

• Connect to SQL Server from ASP.NET
• Learn how to handle SQL Server errors

• Execute SQL statements with ASP.NET

• Use ASP.NET to work with SQL Server databases 
and tables
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Introduction

• One of ASP.NET’s greatest strengths is its ability to 
access and manipulate databases

• ASP.NET can access any database that is ODBC 
compliant
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Connecting to SQL Server with 
ASP.NET

• Open Database Connectivity (ODBC): a standard 
that allows ODBC-compliant applications to access 
any data source for which there is an ODBC driver

• ODBC uses SQL commands to access a database
– ODBC then translates the SQL commands into a 

format that the database understands

• ASP.NET includes strong support for ODBC
• ASP.NET also allows you to work directly with SQL 

Server and Oracle databases
– Working directly provides faster access
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Access SQL Server Databases with 
ASP.NET

• ActiveX Data Objects (ADO): a Microsoft 
database connectivity technology that allows ASP 
and other Web development tools to access 
ODBC- and OLE-compliant databases

• OLE DB: a data source connectivity standard 
promoted by Microsoft
– Supports both relational and nonrelational data 

sources

• ADO.NET: most recent version of ADO that allows 
access to OLE DB-compliant data sources and 
XML
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Access SQL Server Databases with 
ASP.NET (cont’d.)

• Microsoft Data Access Components (MDAC): 
components that make up Microsoft’s Universal 
Data Access technology
– Include ADO and OLE DB

• MDAC is installed with many Microsoft products, 
including Internet Explorer, Internet Information 
Services, Visual Studio, and the .NET Framework 
SDK
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Understanding the 
System.Data.SqlClient 

Namespace

• Use classes in the System.Data.SqlClient 
namespace to access and manipulate SQL Server 
databases
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Understanding the 
System.Data.SqlClient 

Namespace (cont’d.)
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Table 8-1 Core ADO.NET objects



Connecting to an SQL Server 
Database

• SqlConnection class: used to connect to an SQL 
Server database
– Create an object from this class, passing in a 

connection string

• Connection string must include the Data Source 
parameter with the name of the SQL Server 
instance you wish to use
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Connecting to an SQL Server 
Database (cont’d.)
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Table 8-2: SqlConnection class methods



Connecting to an SQL Server 
Database (cont’d.)
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Table 8-3: SqlConnection class properties



Opening and Closing a Data Source

• After creating a SqlConnection object, use the 
Open() method to open the specified SQL Server 
database instance

• Use the Close() method to disconnect the 
database connection
– Database connections do not automatically close 

when an ASP.NET program ends

ASP.NET Programming with C# and SQL Server, First Edition 12



Selecting a Database

• Use the Database parameter in the connection 
string to select the database to be used

• Can also select or change a database with the 
ChangeDatabase() method of the 
SqlConnection class
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Handling SQL Server Errors

• Must handle situations that occur when you cannot 
connect to a database server

• Connection may fail because:
– The database server is not running

– You have insufficient privileges to access the data 
source

– You entered an invalid username and password

• Other causes of errors:
– You are trying to open a nonexistent database

– You entered an invalid SQL statement
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Checking the Database Connection

• Must verify that your program has successfully 
connected to a database before attempting to use it

• State property of the SqlConnection class: 
indicates the current status of the database 
connection
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Checking the Database Connection 
(cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 16

Table 8-4: SqlConnection class State property values



Using Exception Handling to Control 
SQL Server Errors

• Place the Open() method within a try…catch 
block to trap connection errors

• SqlException class: 
– Part of the System.Data.SqlClient namespace

– Represents the exception that is thrown when SQL 
Server returns an error or warning

– Number and Message properties provide an error 
code and message for the exception
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Using Exception Handling to Control 
SQL Server Errors (cont’d.)
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Figure 8-1 Error number and message generated by an invalid user ID



Executing SQL Commands through 
ASP.NET

• System.Data.SqlClient namespace contains 
classes to access and manipulate SQL Server 
databases:
– SqlDataReader class
– SqlCommand class
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Retrieving Records with the 
SqlDataReader Class

• SqlCommand class: used to execute commands 
against Microsoft SQL Server version 7.0 or later

• Syntax:

SqlCommand object = new SqlCommand

                 (“command”, connection)
– command parameter: contains the SQL command to 

be executed
– connection parameter: represents the 
SqlConnection object used to connect to the 
database
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Retrieving Records with the 
SqlDataReader Class (cont’d.)

• DataReader object: used to retrieve read-only, 
forward-only data from a data source

• Forward-only: the program can only move forward 
sequentially through the records in the returned 
data from the first to the last

• Use a DataReader object when you want to read 
data but not add, delete, or modify records

• SqlDataReader class: used to retrieve data from 
SQL Server
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Retrieving Records with the 
SqlDataReader Class (cont’d.)

• ExecuteReader() method of the SqlCommand 
class: creates a SqlDataReader object
– Must assign the SqlDataReader object to a 

variable
• Read() method of the SqlDataReader class: 

advances the SqlDataReader object to the next 
record

• Cursor: your position within the recordset
– Initially placed before the first row in the recordset

– First use of the Read() method places the cursor in 
the first row of the recordset
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Retrieving Records with the 
SqlDataReader Class (cont’d.)
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Figure 8-2 Initial cursor position in a SqlDataReader object



Retrieving Records with the 
SqlDataReader Class (cont’d.)

• Use the Read() method to determine if a next 
record is available
– Returns true if there is another row in the recordset

• Field names in a database table are assigned as 
variables in a SqlDataReader object collection
– Content of each variable changes when the cursor 

position moves to a new row
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Retrieving Records with the 
SqlDataReader Class (cont’d.)

• Use the Close() method of the SqlDataReader 
class to close it when you are finished working with 
it
– SqlDataReader has exclusive access to the 

connection object
– You cannot access any other commands until the 
SqlDataReader object is closed
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Figure 8-3 Database records returned with the SqlDataReader object



Executing SQL Commands with the 
SqlCommand Object

• ExecuteNonQuery() method of the 
SqlCommand object: executes commands against 
a database
– Used for inserting, updating, or deleting rows in a 

SQL Server database

– Does not return a recordset of data
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Working with Databases and Tables

• ASP.NET can be used to create databases and 
tables
– Use the same SQL commands, but execute them 

with ASP.NET instead of SQL Server Management 
Studio

• Note that you normally do not use ASP.NET to 
create databases and tables
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Creating and Deleting Databases

• Use the CREATE DATABASE statement with the 
ExecuteNonQuery() method to create a new 
database
– If database already exists, an error will occur

• Can test if the database exists with the 
ChangeDatabase() method in a try…catch 
block
– If unsuccessful, can create the database in the 
catch block 

• Use the DROP DATABASE statement with the 
ExecuteNonQuery() method to delete a 
database
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Creating and Deleting Databases 
(cont’d.)
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Figure 8-4 Error code and message that prints when you attempt to 
create a database that already exists



Creating and Deleting Databases 
(cont’d.)

• Central Valley Utilities energy efficiency school 
sample application
– Uses a database with two tables: students and 

registration

• New students page registers students with the 
school
– Uses RegularExpressionValidator controls to 

validate the user input
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Figure 8-5 Central Valley Utilities energy efficiency school main Web page
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Figure 8-6 New Student page
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Figure 8-7 New Student page after adding code to create and select the 
database



Creating and Deleting Tables

• Use the CREATE TABLE statement with the 
ExecuteNonQuery() method to create a new 
table

• Must select the correct database with the 
SqlConnection constructor or with the 
ChangeDatabase() method before executing the 
CREATE TABLE statement

• Can use the ExecuteReader() or 
ExecuteNonQuery() methods to determine 
whether the table already exists
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Creating and Deleting Tables (cont’d.)
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Figure 8-8 Error code and message that prints when you attempt to 
create a table that already exists



Creating and Deleting Tables (cont’d.)

• IDENTITY keyword: used with a primary key to 
generate a unique ID for each row in a new table
– First row’s identity value is 1

– Each subsequent row’s identity value increases by 1

• You can specify a start value and the increment 
value if desired

• When adding records to a table with an IDENTITY 
field, do not include a field value for the IDENTITY 
field

• Use the DROP TABLE statement with the 
ExecuteNonQuery() function to delete a table
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Adding, Deleting, 
and Updating Records

• Use the INSERT and VALUES keyword with the 
ExecuteNonQuery() method to add a record
– Values in the VALUES list must be in the same order 

in which the fields were defined in the table

– Specify NULL in any field for which you do not have 
a value

• Use the BULK INSERT statement and the 
ExecuteNonQuery() method to add multiple 
records using data in a local text file 
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Adding, Deleting, 
and Updating Records (cont’d.)

• Use the UPDATE, SET, and WHERE keywords with 
the ExecuteNonQuery() method to update 
records in a table
– UPDATE keyword specifies the table name
– SET keyword assigns values to fields
– WHERE keyword specifies which records to update

• Use the DELETE and WHERE keywords with the 
ExecuteNonQuery() method to delete records in 
a table
– To delete all records in a table, omit the WHERE 

keyword
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Figure 8-9  New Student Web page after obtaining a student ID



Summary

• Open Database Connectivity (ODBC) allows 
ODBC-compliant applications to access any data 
source for which there is an ODBC driver

• ActiveX Data Objects (ADO) is a technology that 
allows ASP to access ODBC- and OLE DB-
compliant databases

• Use classes in the System.Data.SqlClient 
namespace to access and manipulate SQL Server 
databases with ASP.NET

• Use the SqlConnection class to connect to a 
SQL Server database
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Summary (cont’d.)

• Use the State property of the SqlConnection 
class to determine the current status of the 
database connection

• Use the SqlException class to handle errors

• Use the SqlCommand class to execute commands 
against SQL Server 

• Use the ExecuteReader() method with a 
DataReader object to retrieve data from a data 
source

• Use the SqlDataReader class to retrieve data 
from a SQL Server database

ASP.NET Programming with C# and SQL Server, First Edition 42



Summary (cont’d.)

• Your position with a data reader object is called the 
cursor

• Use the ExecuteNonQuery() method of the 
SqlCommand class to execute commands against 
a database

• Use the CREATE DATABASE statement with the 
ExecuteNonQuery() method to create a new 
database

• Use the CREATE TABLE statement with the 
ExecuteNonQuery() method to create a new 
table
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Summary (cont’d.)

• Use the IDENTITY keyword with a primary key to 
generate a unique ID for each new row in a table

• Use the DROP TABLE statement with the 
ExecuteNonQuery() method to delete a table

• Use the INSERT and VALUES keywords with the 
ExecuteNonQuery() method to add a new 
record to a table

• Use the BULK INSERT statement with the 
ExecuteNonQuery() method and a local text file 
to add multiple new records to a table

ASP.NET Programming with C# and SQL Server, First Edition 44



Summary (cont’d.)

• Use the UPDATE, SET, and WHERE keywords with 
the ExecuteNonQuery() method to update 
records in a table

• Use the DELETE and WHERE keywords with the 
ExecuteNonQuery() method to delete records in 
a table
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