
ASP.NET Programming
with C# and SQL Server

 First Edition

Chapter 8
Manipulating SQL Server
Databases with ASP.NET

Objectives

In this chapter, you will:

• Connect to SQL Server from ASP.NET
• Learn how to handle SQL Server errors

• Execute SQL statements with ASP.NET

• Use ASP.NET to work with SQL Server databases
and tables

ASP.NET Programming with C# and SQL Server, First Edition 2

Introduction

• One of ASP.NET’s greatest strengths is its ability to
access and manipulate databases

• ASP.NET can access any database that is ODBC
compliant

ASP.NET Programming with C# and SQL Server, First Edition 3

Connecting to SQL Server with
ASP.NET

• Open Database Connectivity (ODBC): a standard
that allows ODBC-compliant applications to access
any data source for which there is an ODBC driver

• ODBC uses SQL commands to access a database
– ODBC then translates the SQL commands into a

format that the database understands

• ASP.NET includes strong support for ODBC
• ASP.NET also allows you to work directly with SQL

Server and Oracle databases
– Working directly provides faster access

ASP.NET Programming with C# and SQL Server, First Edition 4

Access SQL Server Databases with
ASP.NET

• ActiveX Data Objects (ADO): a Microsoft
database connectivity technology that allows ASP
and other Web development tools to access
ODBC- and OLE-compliant databases

• OLE DB: a data source connectivity standard
promoted by Microsoft
– Supports both relational and nonrelational data

sources

• ADO.NET: most recent version of ADO that allows
access to OLE DB-compliant data sources and
XML

ASP.NET Programming with C# and SQL Server, First Edition 5

Access SQL Server Databases with
ASP.NET (cont’d.)

• Microsoft Data Access Components (MDAC):
components that make up Microsoft’s Universal
Data Access technology
– Include ADO and OLE DB

• MDAC is installed with many Microsoft products,
including Internet Explorer, Internet Information
Services, Visual Studio, and the .NET Framework
SDK

ASP.NET Programming with C# and SQL Server, First Edition 6

Understanding the
System.Data.SqlClient

Namespace

• Use classes in the System.Data.SqlClient
namespace to access and manipulate SQL Server
databases

ASP.NET Programming with C# and SQL Server, First Edition 7

Understanding the
System.Data.SqlClient

Namespace (cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 8

Table 8-1 Core ADO.NET objects

Connecting to an SQL Server
Database

• SqlConnection class: used to connect to an SQL
Server database
– Create an object from this class, passing in a

connection string

• Connection string must include the Data Source
parameter with the name of the SQL Server
instance you wish to use

ASP.NET Programming with C# and SQL Server, First Edition 9

Connecting to an SQL Server
Database (cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 10

Table 8-2: SqlConnection class methods

Connecting to an SQL Server
Database (cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 11

Table 8-3: SqlConnection class properties

Opening and Closing a Data Source

• After creating a SqlConnection object, use the
Open() method to open the specified SQL Server
database instance

• Use the Close() method to disconnect the
database connection
– Database connections do not automatically close

when an ASP.NET program ends

ASP.NET Programming with C# and SQL Server, First Edition 12

Selecting a Database

• Use the Database parameter in the connection
string to select the database to be used

• Can also select or change a database with the
ChangeDatabase() method of the
SqlConnection class

ASP.NET Programming with C# and SQL Server, First Edition 13

Handling SQL Server Errors

• Must handle situations that occur when you cannot
connect to a database server

• Connection may fail because:
– The database server is not running

– You have insufficient privileges to access the data
source

– You entered an invalid username and password

• Other causes of errors:
– You are trying to open a nonexistent database

– You entered an invalid SQL statement

ASP.NET Programming with C# and SQL Server, First Edition 14

Checking the Database Connection

• Must verify that your program has successfully
connected to a database before attempting to use it

• State property of the SqlConnection class:
indicates the current status of the database
connection

ASP.NET Programming with C# and SQL Server, First Edition 15

Checking the Database Connection
(cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 16

Table 8-4: SqlConnection class State property values

Using Exception Handling to Control
SQL Server Errors

• Place the Open() method within a try…catch
block to trap connection errors

• SqlException class:
– Part of the System.Data.SqlClient namespace

– Represents the exception that is thrown when SQL
Server returns an error or warning

– Number and Message properties provide an error
code and message for the exception

ASP.NET Programming with C# and SQL Server, First Edition 17

Using Exception Handling to Control
SQL Server Errors (cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 18

Figure 8-1 Error number and message generated by an invalid user ID

Executing SQL Commands through
ASP.NET

• System.Data.SqlClient namespace contains
classes to access and manipulate SQL Server
databases:
– SqlDataReader class
– SqlCommand class

ASP.NET Programming with C# and SQL Server, First Edition 19

Retrieving Records with the
SqlDataReader Class

• SqlCommand class: used to execute commands
against Microsoft SQL Server version 7.0 or later

• Syntax:

SqlCommand object = new SqlCommand

 (“command”, connection)
– command parameter: contains the SQL command to

be executed
– connection parameter: represents the
SqlConnection object used to connect to the
database

ASP.NET Programming with C# and SQL Server, First Edition 20

Retrieving Records with the
SqlDataReader Class (cont’d.)

• DataReader object: used to retrieve read-only,
forward-only data from a data source

• Forward-only: the program can only move forward
sequentially through the records in the returned
data from the first to the last

• Use a DataReader object when you want to read
data but not add, delete, or modify records

• SqlDataReader class: used to retrieve data from
SQL Server

ASP.NET Programming with C# and SQL Server, First Edition 21

Retrieving Records with the
SqlDataReader Class (cont’d.)

• ExecuteReader() method of the SqlCommand
class: creates a SqlDataReader object
– Must assign the SqlDataReader object to a

variable
• Read() method of the SqlDataReader class:

advances the SqlDataReader object to the next
record

• Cursor: your position within the recordset
– Initially placed before the first row in the recordset

– First use of the Read() method places the cursor in
the first row of the recordset

ASP.NET Programming with C# and SQL Server, First Edition 22

Retrieving Records with the
SqlDataReader Class (cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 23

Figure 8-2 Initial cursor position in a SqlDataReader object

Retrieving Records with the
SqlDataReader Class (cont’d.)

• Use the Read() method to determine if a next
record is available
– Returns true if there is another row in the recordset

• Field names in a database table are assigned as
variables in a SqlDataReader object collection
– Content of each variable changes when the cursor

position moves to a new row

ASP.NET Programming with C# and SQL Server, First Edition 24

Retrieving Records with the
SqlDataReader Class (cont’d.)

• Use the Close() method of the SqlDataReader
class to close it when you are finished working with
it
– SqlDataReader has exclusive access to the

connection object
– You cannot access any other commands until the
SqlDataReader object is closed

ASP.NET Programming with C# and SQL Server, First Edition 25

ASP.NET Programming with C# and SQL Server, First Edition 26

Figure 8-3 Database records returned with the SqlDataReader object

Executing SQL Commands with the
SqlCommand Object

• ExecuteNonQuery() method of the
SqlCommand object: executes commands against
a database
– Used for inserting, updating, or deleting rows in a

SQL Server database

– Does not return a recordset of data

ASP.NET Programming with C# and SQL Server, First Edition 27

Working with Databases and Tables

• ASP.NET can be used to create databases and
tables
– Use the same SQL commands, but execute them

with ASP.NET instead of SQL Server Management
Studio

• Note that you normally do not use ASP.NET to
create databases and tables

ASP.NET Programming with C# and SQL Server, First Edition 28

Creating and Deleting Databases

• Use the CREATE DATABASE statement with the
ExecuteNonQuery() method to create a new
database
– If database already exists, an error will occur

• Can test if the database exists with the
ChangeDatabase() method in a try…catch
block
– If unsuccessful, can create the database in the
catch block

• Use the DROP DATABASE statement with the
ExecuteNonQuery() method to delete a
database

ASP.NET Programming with C# and SQL Server, First Edition 29

Creating and Deleting Databases
(cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 30

Figure 8-4 Error code and message that prints when you attempt to
create a database that already exists

Creating and Deleting Databases
(cont’d.)

• Central Valley Utilities energy efficiency school
sample application
– Uses a database with two tables: students and

registration

• New students page registers students with the
school
– Uses RegularExpressionValidator controls to

validate the user input

ASP.NET Programming with C# and SQL Server, First Edition 31

ASP.NET Programming with C# and SQL Server, First Edition 32

Figure 8-5 Central Valley Utilities energy efficiency school main Web page

ASP.NET Programming with C# and SQL Server, First Edition 33

Figure 8-6 New Student page

ASP.NET Programming with C# and SQL Server, First Edition 34

Figure 8-7 New Student page after adding code to create and select the
database

Creating and Deleting Tables

• Use the CREATE TABLE statement with the
ExecuteNonQuery() method to create a new
table

• Must select the correct database with the
SqlConnection constructor or with the
ChangeDatabase() method before executing the
CREATE TABLE statement

• Can use the ExecuteReader() or
ExecuteNonQuery() methods to determine
whether the table already exists

ASP.NET Programming with C# and SQL Server, First Edition 35

Creating and Deleting Tables (cont’d.)

ASP.NET Programming with C# and SQL Server, First Edition 36

Figure 8-8 Error code and message that prints when you attempt to
create a table that already exists

Creating and Deleting Tables (cont’d.)

• IDENTITY keyword: used with a primary key to
generate a unique ID for each row in a new table
– First row’s identity value is 1

– Each subsequent row’s identity value increases by 1

• You can specify a start value and the increment
value if desired

• When adding records to a table with an IDENTITY
field, do not include a field value for the IDENTITY
field

• Use the DROP TABLE statement with the
ExecuteNonQuery() function to delete a table

ASP.NET Programming with C# and SQL Server, First Edition 37

Adding, Deleting,
and Updating Records

• Use the INSERT and VALUES keyword with the
ExecuteNonQuery() method to add a record
– Values in the VALUES list must be in the same order

in which the fields were defined in the table

– Specify NULL in any field for which you do not have
a value

• Use the BULK INSERT statement and the
ExecuteNonQuery() method to add multiple
records using data in a local text file

ASP.NET Programming with C# and SQL Server, First Edition 38

Adding, Deleting,
and Updating Records (cont’d.)

• Use the UPDATE, SET, and WHERE keywords with
the ExecuteNonQuery() method to update
records in a table
– UPDATE keyword specifies the table name
– SET keyword assigns values to fields
– WHERE keyword specifies which records to update

• Use the DELETE and WHERE keywords with the
ExecuteNonQuery() method to delete records in
a table
– To delete all records in a table, omit the WHERE

keyword
ASP.NET Programming with C# and SQL Server, First Edition 39

ASP.NET Programming with C# and SQL Server, First Edition 40

Figure 8-9 New Student Web page after obtaining a student ID

Summary

• Open Database Connectivity (ODBC) allows
ODBC-compliant applications to access any data
source for which there is an ODBC driver

• ActiveX Data Objects (ADO) is a technology that
allows ASP to access ODBC- and OLE DB-
compliant databases

• Use classes in the System.Data.SqlClient
namespace to access and manipulate SQL Server
databases with ASP.NET

• Use the SqlConnection class to connect to a
SQL Server database

ASP.NET Programming with C# and SQL Server, First Edition 41

Summary (cont’d.)

• Use the State property of the SqlConnection
class to determine the current status of the
database connection

• Use the SqlException class to handle errors

• Use the SqlCommand class to execute commands
against SQL Server

• Use the ExecuteReader() method with a
DataReader object to retrieve data from a data
source

• Use the SqlDataReader class to retrieve data
from a SQL Server database

ASP.NET Programming with C# and SQL Server, First Edition 42

Summary (cont’d.)

• Your position with a data reader object is called the
cursor

• Use the ExecuteNonQuery() method of the
SqlCommand class to execute commands against
a database

• Use the CREATE DATABASE statement with the
ExecuteNonQuery() method to create a new
database

• Use the CREATE TABLE statement with the
ExecuteNonQuery() method to create a new
table

ASP.NET Programming with C# and SQL Server, First Edition 43

Summary (cont’d.)

• Use the IDENTITY keyword with a primary key to
generate a unique ID for each new row in a table

• Use the DROP TABLE statement with the
ExecuteNonQuery() method to delete a table

• Use the INSERT and VALUES keywords with the
ExecuteNonQuery() method to add a new
record to a table

• Use the BULK INSERT statement with the
ExecuteNonQuery() method and a local text file
to add multiple new records to a table

ASP.NET Programming with C# and SQL Server, First Edition 44

Summary (cont’d.)

• Use the UPDATE, SET, and WHERE keywords with
the ExecuteNonQuery() method to update
records in a table

• Use the DELETE and WHERE keywords with the
ExecuteNonQuery() method to delete records in
a table

ASP.NET Programming with C# and SQL Server, First Edition 45

	ASP.NET Programming with C# and SQL Server First Edition
	Objectives
	Introduction
	Connecting to SQL Server with ASP.NET
	Access SQL Server Databases with ASP.NET
	Access SQL Server Databases with ASP.NET (cont’d.)
	Understanding the System.Data.SqlClient Namespace
	Understanding the System.Data.SqlClient Namespace (cont’d.)
	Connecting to an SQL Server Database
	Connecting to an SQL Server Database (cont’d.)
	Slide 11
	Opening and Closing a Data Source
	Selecting a Database
	Handling SQL Server Errors
	Checking the Database Connection
	Checking the Database Connection (cont’d.)
	Using Exception Handling to Control SQL Server Errors
	Using Exception Handling to Control SQL Server Errors (cont’d.)
	Executing SQL Commands through ASP.NET
	Retrieving Records with the SqlDataReader Class
	Retrieving Records with the SqlDataReader Class (cont’d.)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Executing SQL Commands with the SqlCommand Object
	Working with Databases and Tables
	Creating and Deleting Databases
	Creating and Deleting Databases (cont’d.)
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Creating and Deleting Tables
	Creating and Deleting Tables (cont’d.)
	Slide 37
	Adding, Deleting, and Updating Records
	Adding, Deleting, and Updating Records (cont’d.)
	Slide 40
	Summary
	Summary (cont’d.)
	Slide 43
	Slide 44
	Slide 45

