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Learning Objectives

 To understand the syntax of XPath expressions
 To understand and be able to navigate the tree 

structure of XML documents
 To be able to construct XPath expressions that will 

extract nodes from an XML document
 To be able to write XSL Transformations that 

generate output documents in XML or XHTML
 To understand the use of different character 

encodings when generating XML documents
 To understand the difference between output driven 

and input driven transformations
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XPath: Querying XML

 XPath (XML Path) provides a language for accessing 
parts of an XML document. It is used by both 
eXtensible Stylesheet Language Transformations 
(XSLT) and the XML Pointer Language (XPointer) 

 The main role of XPath is to provide an expression 
syntax appropriate for selecting one or more nodes 
from an XML document.

– To extend this role it also provides some facilities for 
manipulating strings, numbers and Booleans.

– In the context of XSLT it is used for pattern matching, which 
is the aspect we will focus on here.
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XPath And XML Trees

 To understand the way that the XPath data model works, we 
need to visualise an XML document as a tree of nodes

 There are seven types of node:
– root nodes
– element nodes
– text nodes
– attribute nodes
– namespace nodes
– processing instruction nodes
– comment nodes

 The main nodes that we process in XPath expressions will be 
element and attribute nodes.
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Example XML Document

 Represents claims made against policies.
 The root ‘policy-claims’ element contains one or 

more ‘policy’ elements
 each policy has

– a ‘type’ attribute
– a ‘policy-holder’ element (a string)
– optional ‘claims’ element

 If present, the ‘claims’ element will contain one or more ‘claim’ 
elements, and each of these will contain a ‘year’ (Gregorian 
calendar ‘gYear’ type) and ‘details’ (a string):
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 XML
Schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="policy-claims">
  <xs:complexType>
   <xs:sequence>
    <xs:element name="policy" minOccurs="1" maxOccurs="unbounded">
     <xs:complexType>
      <xs:sequence>
       <xs:element name="policy-holder" type="xs:string"/>
       <xs:element name="claims" minOccurs="0" maxOccurs="1">
        <xs:complexType>
         <xs:sequence>
          <xs:element name="claim" minOccurs="1" maxOccurs="unbounded">
           <xs:complexType>
            <xs:sequence>
             <xs:element name="year" type="xs:gYear"/>
             <xs:element name="details" type="xs:string"/>
            </xs:sequence>
           </xs:complexType>
          </xs:element>
         </xs:sequence>
        </xs:complexType>
       </xs:element>
      </xs:sequence>
      <xs:attribute name="type" type="xs:string"/>
     </xs:complexType>
    </xs:element>
   </xs:sequence>
  </xs:complexType>
 </xs:element>
</xs:schema>

policy-claims.xsd
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XML Document As A Tree

policy-claims
(the document element)

Here, there are policy-holder elements with text 
nodes and there may be a claims element

Within a claim there are year and details 
elements containing text nodes

/ (the root)

policy elements with policy-holder branches,  type 
attributes and optional claims elements

KEY:
Element
Attribute
Text node

A claims element has one or more claim elements
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‘Family Tree’ Vocabulary

 XPath syntax refers to ‘parent’, ‘child’, 
‘ancestor’ and ‘descendent’ nodes.
– ‘policy-holder’ is a child node of ‘policy’.
– ‘policy’ is the parent of ‘policy-holder’.
– ‘policy’ is an ancestor of ‘claim’
– ‘claim’ is a descendent of ‘policy’.
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Document Order

 As a consequence of having a tree-like 
structure, the nodes in an XML document 
appear in a document order clockwise from 
the root.
– ‘policy-claims’ comes first
– Then the first ‘policy’ node
– Followed by a ‘claims’ node
– Inside the ‘claims’ node is a ‘claim’, followed by 

‘year’ and ‘details’ nodes, etc.
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 XPath Expressions and the Document 
Order

 XPath takes account not only of the tree structure of 
an XML document, but also of the document order.

 When several elements are returned by an XPath 
expression, they are returned in the same order as 
they are encountered in the document.

 Attributes however, do not have a document order, 
so if more than one attribute is returned the order is 
not fixed.
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The Context – The Starting Point 
of an XPath Expression

 XPath is primarily a way of writing expressions that 
return an object that may be one of the following:

– A set of nodes 
– A Boolean value
– A floating-point number
– A string of Unicode characters 

 In order to evaluate an expression, the XPath query 
has to start at a particular node.

 The starting node used for the query is known as the 
context
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Location Paths

 The most important part of XPath is the ability to 
express a location path to identify parts of an XML 
document.

– Much of this syntax is based on the concepts of child, 
ancestor and descendent nodes.

– child::* selects all elements that are children of the current 
context node.

– Ancestors and descendent nodes are indicated by 
ancestor:: and descendent::

– In addition, we can select attribute nodes by using the 
attribute:: prefix in an XPath expression.
 attribute::type would select the ‘type’ attribute of the ‘policy’ 

node, if that was the current context node.
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Location Paths

 Either relative to the current node or absolute (from 
the root node).

 The path from a parent node to a child node is 
indicated by the ‘/’ character. 

 A relative path begins with the name of a node.

– only makes sense if the current context is the ‘policy-claims’ 
node.

 An absolute path begins with the root node (‘/’)

 current context does not matter

child::policy/child::policy-holder

/child::policy-claims/child::policy/child::policy-holder
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Abbreviated syntax

 The most important abbreviation is that ‘child::’ can 
be left out of the location path. In effect, ‘child::’ is 
the default, so the location path

 Is an abbreviation of:

 There is also an abbreviation for attributes; attribute:: 
can be abbreviated to @

 Instead of referring to attribute::type in a location 
path we could use the abbreviated form @type

/policy-claims/policy/policy-holder

/child::policy-claims/child::policy/child::policy-holder
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XPath Operators

Operator Meaning

/ Child operator. Selects children of whatever is to the left of it. If there is 
nothing to the left, it starts at the root element. In XPath a ‘child’ is an 
immediate child (e.g. grandchildren are not children)

// Stands for any number of intermediate elements, to express ancestor - 
descendant relationships

. The current context (the current node)

.. The parent of the current node

* Wildcard. Matches all elements

@ Distinguishes attributes from elements (attribute prefix)
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Example – Policy Claims
<?xml version="1.0"?>
<policy-claims xmlns:xsi=… >
 <policy type="contents">
  <policy-holder>A. Liu</policy-holder>
  <claims>
   <claim>
    <year>2002</year>
    <details>Stolen TV</details>
   </claim>
  </claims>
 </policy>
 <policy type="contents">
  <policy-holder>B. Singh</policy-holder>
 </policy> <policy type="buildings">
  <policy-holder>C. Jones</policy-holder>
   <claims>
    <claim>
     <year>2004</year>
      <details>Fire damage to Kitchen</details>
    </claim>
  </claims>
 </policy>

<policy type="contents">
 <policy-holder>D. Umaga
 </policy-holder>
  <claims>
   <claim>
    <year>1998</year>
    <details>Stolen bike</details>
   </claim>
   <claim>
    <year>2005</year>
    <details>Dropped Ming Vase
    </details>
   </claim>
  </claims>
 </policy>
 <policy type="buildings">
  <policy-holder>E. Tolstoy
  </policy-holder>
 </policy>
</policy-claims>

policy-claims.xml
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Testing XPath In XML Spy

 XML Spy has an interactive XPath tool
– Choose the XPath tab on the output window
– Type your XPath queries into the text box 

and the result will be evaluated dynamically
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Accessing Child Nodes

 One approach is to use a series of ‘child’ 
operators to specify the full path through the 
document, e.g.

 The resulting nodes would therefore be the 
five policy holders.

/policy-claims/policy/policy-holder
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Accessing Descendents

 // selects an element without specifying the full path.
 Using the wildcard character (*) matches all the sub-elements beneath 

the selected nodes.
 This expression, which uses both the ‘//’ operator and the wildcard, will 

return all the ‘year’ and ‘details’ elements’ 

 These would be the resulting nodes (note they are returned in the 
document order)

Year - 2002
Details - Stolen TV
Year - 2004
Details - Fire damage to Kitchen
Year - 1998
Details - Stolen bike
Year - 2005
Details - Dropped Ming Vase

//claim/* 
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Filtering

 Searching for specific elements, attributes or values.
 XPath filter patterns use square brackets and evaluate to a 

Boolean value

 Matches only policy elements that contain at least one ‘claims’ 
element child, in the case of our example document returning 
the first three ‘policy’ nodes.

 We can also query the data, e.g.

 This would select only one of the ‘claim’ nodes in our 
document.

 There is also the usual set of relational operators (>, <, >=, <=) 
and the ‘!=’ symbol for ‘not equals’, that work with numeric data. 

/policy-claims/policy[claims]

//claim[year = 2002]
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Attributes In XPath Queries

 Attributes and elements are treated in a similar way
– Only difference is the use of the ‘@’ symbol.

 The following expression will return the attribute 
‘type’ nodes that have the value ‘contents’ 

 If ‘type’ had been an element, then the expression 
would be identical except for not including the ‘@’.

 Here, we use the query to select buildings policies 
that have claims made against them

/policy-claims/policy[@type = "contents"]

/policy-claims/policy[@type = "buildings"][claims]
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eXtensible Stylesheet Language 
Transformations (XSLT)

 XSLT can be used to generate web pages from XML 
documents.

 XSLT is part of the Extensible Stylesheet Language (XSL), a 
set of standards for XML document transformation and 
presentation.

 It consists of three parts; XSLT, XPath and XSL-FO 
– XSL Transformations (XSLT) 

 can transform XML documents into various types of other document
– XML Path (XPath) 

 an expression language that can select certain parts of an XML 
document. 

– XSL Formatting Objects (XSL-FO) 
 a way of formatting XML in presentational formats other than markup, 

e.g. PDF (Portable Document Format)
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XSLT, HTML and CSS

 Although XSL refers to stylesheets, it does 
not replace CSS
– XSLT, HTML and CSS are complementary

XSL

XPath

XSLT XML

CSS(X)HTML

uses

transforms

transformed 
into

presents
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Processing XSLT

 An XSLT stylesheet, or transform, consists of a number of 
aspects. 

 XPath is used to identify content from the input document that 
will be included in the output document.

 There will also be other parts of the transform that are meant to 
be used directly in the output document, for example (X)HTML 
tags.

 XSLT uses template matching to process different parts of the 
input document in different ways

– Nodes that match the template’s XPath expression are included in 
the output document. 
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XSL Namespace

 The first element of an XSL document 
consists of a version number (1.0 or 2.0) and 
a namespace reference
– The usual prefix for the XSLT namespace is ‘xsl’:

– The namespace reference is a good example of a 
URN. It does not represent a downloadable 
resource. However if you put the URN into a 
browser it identifies its purpose.

<elementname version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
…
</elementname>
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Stylesheets and Transforms

 The root element for an XSL transform can 
be either <xsl:stylesheet…>

 or <xsl:transform…>

 Both mean exactly the same thing
– The ‘xsl’ can also be replaced by something else, 

but is the usual naming convention

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >

<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
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Template Matching

 An XSL transform contains one or more 
<xsl:template…> elements

 <xsl:template…> elements have a ‘match’ 
attribute, the value of which is an XPath 
expression

 This expression must match something in the 
XML document being processed

<xsl:template match=″XPath expression″>
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The Template Element

 The body of the template element defines 
what is to be sent to the output document if 
the element is matched
– This can be a combination of XML from the 

document and other markup
<xsl:template match="XPath expression"> 
… specify what goes to the output document here
… this may be markup, and/or XSLT elements that
… process the input XML document
</xsl:template>
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Combining XML and XHTML Markup

XHTML
<html>
<markup>
<..>
<markup>
<..>
<markup>
</html>

XML
<..>
<..>
<..>
<..>

XSLT
<html>
<markup>
<template match=”XPath expression”>
output expression
<markup>
<template match=”XPath expression”>
output expression
<markup>
</html>

Content copied from 
XML

(b)(a)
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Matching elements

 The ‘match’ attribute of an ‘xsl:template’ start tag 
must contain a valid XPath expression.

– To apply a template to the root element, for example, the 
value of the ‘match’ attribute is the XPath expression for the 
root element, which is ‘/’

– Another example from the ‘policy-claims.xml’ document 
might match the ‘policy’ node, again using standard XPath

<xsl:template match="/"> 
… define the transform for the root element here
</xsl:template>

<xsl:template match="/policy-claims/policy"> 
… define the transform for the policy element here
</xsl:template>
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Output Types

 XSL Transformations can generate output using three different 
methods:

– xml, html or text
 The method can be specified by using the ‘method’ attribute of 

the ‘xsl:output’ element

 The default is XML document, so HTML or text must be 
specified for those types of output

 However If the first non-XSL child node is <html>, then the 
output is automatically HTML instead of XML (not XHTML!).

<xsl:output method="html" version="4.0"/>

<xsl:stylesheet version="1.0“ xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
  <xsl:template match="/">
    <html>

<xsl:output method="xml" version="1.0"/>
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Linking an XSLT Stylesheet

 To link an XSLT to an XML document, we can add 
an XML stylesheet processing instruction to the top 
of the document

 This can be used in, for example, a browser
– Not all processing applications need this instruction in the 

XML - some can apply the transform to the XML externally
– Other stylesheet types can be used as well, for example 

CSS

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="policy-claims.xsl"?> 
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Selecting Values From the XML

 In XSLT the <xsl:value-of..> element is used to 
select element or attribute values from the source 
document

 The ‘select’ attribute contains an XPath expression

 The value returned from the XPath expression is 
inserted into the output document 

 A single ‘xsl:value-of’ element will only match a 
single node from the source document, which will be 
the first one that it matches in the document order.

<xsl:value-of select="XPath expression"/>



© Cengage Learning 
2008 - 2010

34

xsl:value-of (element)

 In this example, the value of the (first) policy-
holder element is selected

<?xml version="1.0"?>
<xsl:stylesheet version="1.0“ xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
  <HTML>
   <HEAD>
    <TITLE>Insurance Claims</TITLE>
   </HEAD>
   <BODY>
    <H1>Claimants</H1>
    <H2>
     <xsl:value-of select="//policy-holder"/>
    </H2>
   </BODY>
  </HTML>
 </xsl:template>
</xsl:stylesheet>

xsl:value-of, which uses the value of 
the element

an XPath expression

Example6-1.xsl
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Resulting Document

 The result of the transformation in XMLSpy 
is:

<HTML>
 <HEAD>
  <META http-equiv="Content-Type" content="text/html; charset=UTF-16">
  <TITLE>Insurance Claims</TITLE>
 </HEAD>
 <BODY>
  <H1>Claimants</H1>
  <H2>A. Liu</H2>
 </BODY>
</HTML>

This was the value 
of the first matching 
element
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Selecting Attributes

 ‘xsl:value-of’ can be used to select either 
element or attribute values

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<HTML>
 <HEAD>
  <TITLE>Insurance Claims</TITLE>
 </HEAD>
 <BODY>
  <H1> Claimants and policy types </H1>
  <H2>
    Name: <xsl:value-of select="policy-claims/policy/policy-holder"/> <br /> 
   Policy type: <xsl:value-of select="policy-claims/policy/@type"/>
  </H2>
 </BODY>
</HTML>

element

Note XHTML tag – 
what happens?

attribute

Example6-2.xsl
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HTML Tag Output

 The HTML output is not XHTML
– The <br /> tag is converted into ‘legacy’ html

<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=UTF-16">
<TITLE>Insurance Claims</TITLE>
</HEAD>
<BODY>
 <H1> Claimants and policy types </H1>
 <H2>
 Name: A. Liu
 <br>
 Policy type: contents
 </H2>
</BODY>
</HTML>



© Cengage Learning 
2008 - 2010

38

Generating XHTML

 We can generate XHTML by setting the 
output method to ‘xml’ and adding public and 
system doctypes
– Tags also need to be XHTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" 
 doctype-public="-//W3C//DTD XHTML 1.1//EN" 
 doctype-system=" http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd "/>
 <xsl:template match="/">
  <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
   <head> Example6-3.xsl
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Modified Resulting Document

 The result of the modified transformation is 
an XHTML document:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.1//EN“
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
  <title>Insurance Claims</title>
 </head>
 <body>
  <h1> Claimants and policy types </h1>
  <h2> Name: A. Liu
   <br /> 
   Policy type: contents
  </h2>
 </body>
</html>

Main changes 
to document
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Iteration With <xsl:for-each…>

 So far, we have only been getting the first 
match from each <xsl:valueof…> element

 The <xsl:for-each…> element enables us to 
iterate over all the matching nodes in the 
XML document
– Like <xsl:valueof…>, its ‘select’ attribute uses an 

XPath expression to find all the matching nodes
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Iteration Example

 Here, the <xsl:for-each…> element selects 
all the policy nodes
<body>
  <h1>Claimants and policy types</h1>
    <xsl:for-each select="policy-claims/policy">
     <h2>Name: <xsl:value-of select="policy-holder"/>, 
      Policy type: <xsl:value-of select="@type"/>
     </h2>
    </xsl:for-each>
  </h2>
</body>

These XPath expressions are 
relative to the policy node

Example6-4.xsl
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<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
  <title>Insurance Claims</title>
 </head>
 <body>
  <h1>Claimants and policy types</h1>
  <h2>Name: A. Liu, Policy type: contents</h2>
  <h2>Name: B. Singh, Policy type: contents</h2>
  <h2>Name: C. Jones, Policy type: buildings</h2>
  <h2>Name: D. Umaga, Policy type: contents</h2>
  <h2>Name: E. Tolstoy, Policy type: buildings</h2>
 </body>
</html>

Iteration Example Output
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Selection With <xsl:if…>

 We can use <xsl:if..> to conditionally include 
elements or attributes in the output document

 The ‘test’ attribute contains a conditional 
XPath expression
<xsl:if test="XPath expression">

…

</xsl:if>
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<xsl:if…> example

 In this example, we add a condition to our 
iteration that only selects policies with claims 
since 2003 
<xsl:for-each select="policy-claims/policy">
 <xsl:if test="claims/claim[year > 2003]">
   Name: <xsl:value-of select="policy-holder"/>, 
   <br/>
   Claim dates:
   <xsl:for-each select="claims/claim">
    <xsl:value-of select="year"/>, 
   </xsl:for-each>
   <hr/>
  </xsl:if>
</xsl:for-each>

Example6-5.xsl
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<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head> <title>Insurance Claims</title> </head>
 <body>
  <h1>Claimants since 2003</h1>
  <h2>
  Name: C. Jones, 
  <br />
  Claim dates:2004, 
  </h2>
  <hr />
  <h2>Name: D. Umaga, 
  <br />
  Claim dates:1998,2005, 
  </h2>
  <hr />
 </body>
</html>

Example Output
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Alternative Actions

 There is no alternative action that can be 
specified with <xsl:if…>

 To provide an alternative we must use 
choose, when and otherwise

<xsl:choose>
  <xsl:when test=“XPath selection expression">
    Action for all selected nodes
  </xsl:when>
  <xsl:otherwise>
    Action for all other nodes
  </xsl:otherwise>
</xsl:choose>
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<xsl:choose> example

 Here we display a message that indicates if a 
customer has recent claims or not
<xsl:for-each select="policy-claims/policy">
 <xsl:choose>
  <xsl:when test="claims/claim[year > 2003]">
   customer has recent claims<br/>
   Claim dates:
   <xsl:for-each select="claims/claim">
    <xsl:value-of select="year"/>,
   </xsl:for-each> <br/>
  </xsl:when>
  <xsl:otherwise>
   customer has no recent claims <br/>
  </xsl:otherwise>
 </xsl:choose>
 Name: <xsl:value-of select="policy-holder"/>,
 Policy type: <xsl:value-of select="@type"/> <hr/>
</xsl:for-each>

Example6-6.xsl
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<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
  <head> <title>Insurance Claims</title> </head>
  <body>
    <h1>Claimant History</h1>
    <h2> customer has no recent claims<br />
    Name: A. Liu, Policy type: contents</h2> <hr />
    <h2> customer has no recent claims<br />
    Name: B. Singh, Policy type: contents</h2> <hr />
    <h2> customer has recent claims<br />
    Claim dates:2004,<br />
    Name: C. Jones, Policy type: buildings</h2> <hr />
    <h2> customer has recent claims<br />  
    Claim dates:1998,2005,<br />
    Name: D. Umaga, Policy type: contents</h2> <hr />
    <h2> customer has no recent claims<br />
    Name: E. Tolstoy, Policy type: buildings</h2> <hr />
  </body>
</html>

Example Output
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Sorting with <xsl:sort>

 <xsl:sort> has several attributes 
 select

– The XPath expression that identifies the sort key
 data-type

– States whether the sort key is ‘text’ or a ‘number’
 order

– Determines the sort order. Can be 'ascending' or 
'descending', 

 case-order
– For text sorting. Determines which case is sorted first. Can 

be ‘upper-first’ or ‘lower-first’
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Sorting with <xsl:sort>

 <xsl:sort> can appear either as a child of an 
<xsl:apply-templates> element (described later) or 
an <xsl:for-each> element

– If it is a child of a <xsl:for-each>, it must be the first child

 If using more than one <xsl:sort> in a single node, 
the primary sort key is given by the first <xsl:sort> 
instruction, the secondary key by the second and so 
on. 
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Sorting Example

• Here, we sort the resulting nodes according 
to the alphabetical order of their insurance 
‘type’ attribute

<xsl:for-each select="policy-claims/policy">
  <xsl:sort select="@type" data-type="text" order="ascending"/> 
  <p>
  Name: <xsl:value-of select="policy-holder"/>, 
  Policy type: <xsl:value-of select="@type"/>
  </p>
</xsl:for-each>

Example6-7.xsl
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<?xml version="1.0" encoding="UTF-16"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
  <head>
    <title>Insurance Claims</title>
  </head>
  <body>
    <h1>Claimants and policy types</h1>
    <p>Name: C. Jones, Policy type: buildings</p>
    <p>Name: E. Tolstoy, Policy type: buildings</p>
    <p>Name: A. Liu, Policy type: contents</p>
    <p>Name: B. Singh, Policy type: contents</p>
    <p>Name: D. Umaga, Policy type: contents</p>
  </body>
</html>

Sorted Output Document

‘buildings’ policies 
appear before 
‘contents’ policies
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Writing Attributes to the Output 
Document 

 Attributes can be written using ‘xsl:attribute’ 
elements
– e.g. to add a ‘class’ attribute to a paragraph

 This element can be combined with an 
‘xsl:value-of’ element to supply the attribute 
value

<p><xsl:attribute name="class"> …

<p>
 <xsl:attribute name="class">
   <xsl:value-of select ="@type"/>
 </xsl:attribute>
</p>

Example6-8.xsl
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Generated Markup

 The ‘class’ attribute is added to each 
paragraph, in each case given with the value 
of a ‘type’ attribute from the XML input 
document:

 CSS could then be applied

<p class="contents">Name: A. Liu</p>
<p class="contents">Name: B. Singh</p>
<p class="buildings">Name: C. Jones</p>
<p class="contents">Name: D. Umaga</p>
<p class="buildings">Name: E. Tolstoy</p>

.contents{color:white; background-color:black}

.buildings{color:black; background-color:white}



© Cengage Learning 
2008 - 2010

55

Other Attribute Examples

 Other non-presentational attributes that might 
come from an XML transform include 
anchors and image files
<xsl:when test="@type='contents' ">
  <img>
    <xsl:attribute name="src">
      <xsl:value-of select="/policy-claims/contents-image/" />
    </xsl:attribute>
   <xsl:attribute name="alt">
      contents
   </xsl:attribute>
  </img>

<a>
 <xsl:attribute name="href">
  <xsl:value-of select="policy-claims/company-domain"/>
 </xsl:attribute>Company home page
</a>

Example6-9.xsl
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XML Special Characters

 In HTML we can use special entity 
characters such as:
– &nbsp; for a non breaking space
– &copy; for a copyright symbol (©)

 These are not recognised in XML so cannot 
be used in XSL Transformations

 We have to use their number codes instead
– &#160; for a non breaking space
– &#169; for a copyright symbol (©)
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Using a Special Character

 In this anchor element we add the copyright 
symbol to the hyperlink text

<a>
  <xsl:attribute name="href">
   <xsl:value-of select="policy-claims/company-domain"/>
  </xsl:attribute>
  &#169;WebHomeCover
</a>
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Some Special Character Codes

 &#33; Exclamation mark !
 &#34; Quotation mark "
 &#35; Number sign #
 &#36; Dollar sign $
 &#37; Percent sign %
 &#38; Ampersand &
 &#39; Apostrophe '
 &#40; Left parenthesis (
 &#41; Right parenthesis )
 &#42; Asterisk *
 &#43; Plus sign +
 &#44; Comma ,
 &#45; Hyphen -
 &#46; Period (full stop) .

 &#58; Colon :
 &#59; Semi-colon ;
 &#60; Less than <
 &#61; Equals sign =
 &#62; Greater than >
 &#63; Question mark ?
 &#64; Commercial at @
 &#91; Left square bracket [
 &#93; Right square bracket ]
 &#160; Non-breaking Space
 &#162; Cent sign ¢
 &#163; Pound sterling £
 &#169; Copyright ©
 &#174; Registered trademark ®



© Cengage Learning 
2008 - 2010

59

Character Encoding

 The problem is that the numbers may be 
interpreted differently depending on the 
character encoding  being used

 Since XML defaults to utf-8, we can specify 
this in a meta element of a generated 
document

<head>
 <meta http-equiv="Content-Type" content="text/html" charset="utf-8" />
</head>
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Transform Encoding

 You can set the encoding of the generated 
document to something else, but you must 
match it in the META element

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" encoding="ISO-8859-1"
doctype-public="'-//W3C//DTD XHTML 1.1//EN"
doctype-system="http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"/>
<xsl:template match="/">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html" charset="ISO-8859-1" />
<title>…</title>
</head>

ISO-8859-1 is a ‘legacy’ 
encoding for HTML pages
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UTF-8

 Best option is to always use UTF-8
<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" encoding="utf-8"
doctype-public="'-//W3C//DTD XHTML 1.1//EN"
doctype-system="http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"/>
<xsl:template match="/">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html" charset="utf-8" />
<title>…</title>
</head>
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Transforming From XML to XML 

 The examples we have seen so far have been from 
XML to (X)HTML

 We may also want to transform one XML document 
into another

 In this case we may want to keep whole XML 
elements from the source document

 To include parts of the source document as the 
original XML (rather than as the text values of 
elements or attributes), use the <xsl:copy-of…> 
element
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<xsl:copy-of…>

 This XSLT stylesheet copies XML elements:

 The XPath expression selects policy holders
 The full <policy-holder> element of each one 

(including tags) will be copied to the output 
document

<?xml version="1.0"?>
<policy-holders xsl:version="1.0"  
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xsl:copy-of select="/policy-claims/policy/policy-holder"/>
</policy-holders>

Example6-10.xsl
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Output XML Document

<?xml version="1.0"?>
<policy-holders>
  <policy-holder>A. Liu</policy-holder>
  <policy-holder>B. Singh</policy-holder>
  <policy-holder>C. Jones</policy-holder>
  <policy-holder>D. Umaga</policy-holder>
  <policy-holder>E. Tolstoy</policy-holder>
</policy-holders>
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Transforms Using Template 
Matching 

 XLST can do two different types of transformation
– Output driven (pull)
– Input-driven (push)

 So far all our examples have been output-driven
– Style sheets based on the structure of the output document 
– Using sequence, selection and iteration from the root

 An input driven approach applies ‘template rules’ to 
particular elements

– More flexible for semi structured data
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Pull and Push Transformations

Input 
document

Output 
document

Input 
document

Output 
document

Sequence
,
Selection,
Iteration

Template 
rules

Output driven (pull)

Input driven (push)
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Example

 We might provide an XSL transformation for 
a document by template matching several 
different nodes:
– <xsl:template match="/">
– <xsl:template match="heading">
– <xsl:template match="subheading">
– <xsl:template match="paragraph">

 Each node will have its own transform
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document.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="Example6-11.xsl"?>
<document>
  <heading>My first heading</heading>
  <subheading>My first subheading</subheading>
  <paragraph>Para 1</paragraph>
  <paragraph>Para 2</paragraph>
  <heading>My second heading</heading>
  <subheading>My second subheading</subheading>
  <paragraph>Para 3</paragraph>
  <subheading>My third subheading</subheading>
  <paragraph>Para 4</paragraph>
…etc..
</document>
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Template Matching

 This is a ‘push’ transformation.
– Instead of imposing the overall structure, we 

respond to template matches in the input 
document

 <xsl:template match="document/paragraph">
    <p><xsl:value-of select="."/></p>
  </xsl:template>
  <xsl:template match="subheading">
    <h2><xsl:value-of select="."/></h2>
  </xsl:template>
  <xsl:template match="heading">
    <h1><xsl:value-of select="."/></h1>
  </xsl:template>

Example6-11.xsl
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Invoking Other Templates

 From one template, we can apply other 
templates to other nodes

– This will insert output from other template 
matches at that point in the output document

 By default, all children of the current node will 
have templates applied, but we can specify 
individual nodes using the ‘select’ attribute

<xsl:apply-templates/>

<xsl:apply-templates select="policies/policy"/>
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Example Template Matching (1)

 Root template

 Policy template

 <xsl:template match="/">
…XHTML markup
     <xsl:apply-templates select="policy-claims/policy"/>
…XHTML markup
  </xsl:template>

Ignore other child nodes

<xsl:template match="policy">
…XHTML markup
<xsl:apply-templates select="claims"/>
</xsl:template>

Ignore other child nodes 
(do not apply a template 
to ‘policy-holder’)

Example6-12.xsl
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Example Template Matching (2)

 Claims template

 Claim template

<xsl:template match="claims">
…XHTML markup
   <xsl:apply-templates/>
…XHTML markup
</xsl:template>

Process all child nodes. The 
only child of ‘claims’ is ‘claim’

<xsl:template match="claim">
…XHTML markup
</xsl:template>

No ‘apply-templates’, so no 
processing for the child nodes 
‘year’ and ‘details’
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Chapter Summary

 XPath expressions
– Picking out parts of an XML documents

 XSLT for transforming documents from one 
(type) to another

 Transforming XML into HTML and XHTML
 Transforming XML into XML
 Input-driven and output driven 

transformations
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