
© Cengage Learning 2008 - 20101

Dynamic Web Application Development
using XML and Java

by David Parsons

Chapter 6

Transforming XML:
XPath and XSLT

© Cengage Learning
2008 - 2010

2

Learning Objectives

 To understand the syntax of XPath expressions
 To understand and be able to navigate the tree

structure of XML documents
 To be able to construct XPath expressions that will

extract nodes from an XML document
 To be able to write XSL Transformations that

generate output documents in XML or XHTML
 To understand the use of different character

encodings when generating XML documents
 To understand the difference between output driven

and input driven transformations

© Cengage Learning
2008 - 2010

3

XPath: Querying XML

 XPath (XML Path) provides a language for accessing
parts of an XML document. It is used by both
eXtensible Stylesheet Language Transformations
(XSLT) and the XML Pointer Language (XPointer)

 The main role of XPath is to provide an expression
syntax appropriate for selecting one or more nodes
from an XML document.

– To extend this role it also provides some facilities for
manipulating strings, numbers and Booleans.

– In the context of XSLT it is used for pattern matching, which
is the aspect we will focus on here.

© Cengage Learning
2008 - 2010

4

XPath And XML Trees

 To understand the way that the XPath data model works, we
need to visualise an XML document as a tree of nodes

 There are seven types of node:
– root nodes
– element nodes
– text nodes
– attribute nodes
– namespace nodes
– processing instruction nodes
– comment nodes

 The main nodes that we process in XPath expressions will be
element and attribute nodes.

© Cengage Learning
2008 - 2010

5

Example XML Document

 Represents claims made against policies.
 The root ‘policy-claims’ element contains one or

more ‘policy’ elements
 each policy has

– a ‘type’ attribute
– a ‘policy-holder’ element (a string)
– optional ‘claims’ element

 If present, the ‘claims’ element will contain one or more ‘claim’
elements, and each of these will contain a ‘year’ (Gregorian
calendar ‘gYear’ type) and ‘details’ (a string):

© Cengage Learning
2008 - 2010

6

 XML
Schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="policy-claims">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="policy" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="policy-holder" type="xs:string"/>
 <xs:element name="claims" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="claim" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="year" type="xs:gYear"/>
 <xs:element name="details" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="type" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

policy-claims.xsd

© Cengage Learning
2008 - 2010

7

XML Document As A Tree

policy-claims
(the document element)

Here, there are policy-holder elements with text
nodes and there may be a claims element

Within a claim there are year and details
elements containing text nodes

/ (the root)

policy elements with policy-holder branches, type
attributes and optional claims elements

KEY:
Element
Attribute
Text node

A claims element has one or more claim elements

© Cengage Learning
2008 - 2010

8

‘Family Tree’ Vocabulary

 XPath syntax refers to ‘parent’, ‘child’,
‘ancestor’ and ‘descendent’ nodes.
– ‘policy-holder’ is a child node of ‘policy’.
– ‘policy’ is the parent of ‘policy-holder’.
– ‘policy’ is an ancestor of ‘claim’
– ‘claim’ is a descendent of ‘policy’.

© Cengage Learning
2008 - 2010

9

Document Order

 As a consequence of having a tree-like
structure, the nodes in an XML document
appear in a document order clockwise from
the root.
– ‘policy-claims’ comes first
– Then the first ‘policy’ node
– Followed by a ‘claims’ node
– Inside the ‘claims’ node is a ‘claim’, followed by

‘year’ and ‘details’ nodes, etc.

© Cengage Learning
2008 - 2010

10

 XPath Expressions and the Document
Order

 XPath takes account not only of the tree structure of
an XML document, but also of the document order.

 When several elements are returned by an XPath
expression, they are returned in the same order as
they are encountered in the document.

 Attributes however, do not have a document order,
so if more than one attribute is returned the order is
not fixed.

© Cengage Learning
2008 - 2010

11

The Context – The Starting Point
of an XPath Expression

 XPath is primarily a way of writing expressions that
return an object that may be one of the following:

– A set of nodes
– A Boolean value
– A floating-point number
– A string of Unicode characters

 In order to evaluate an expression, the XPath query
has to start at a particular node.

 The starting node used for the query is known as the
context

© Cengage Learning
2008 - 2010

12

Location Paths

 The most important part of XPath is the ability to
express a location path to identify parts of an XML
document.

– Much of this syntax is based on the concepts of child,
ancestor and descendent nodes.

– child::* selects all elements that are children of the current
context node.

– Ancestors and descendent nodes are indicated by
ancestor:: and descendent::

– In addition, we can select attribute nodes by using the
attribute:: prefix in an XPath expression.
 attribute::type would select the ‘type’ attribute of the ‘policy’

node, if that was the current context node.

© Cengage Learning
2008 - 2010

13

Location Paths

 Either relative to the current node or absolute (from
the root node).

 The path from a parent node to a child node is
indicated by the ‘/’ character.

 A relative path begins with the name of a node.

– only makes sense if the current context is the ‘policy-claims’
node.

 An absolute path begins with the root node (‘/’)

 current context does not matter

child::policy/child::policy-holder

/child::policy-claims/child::policy/child::policy-holder

© Cengage Learning
2008 - 2010

14

Abbreviated syntax

 The most important abbreviation is that ‘child::’ can
be left out of the location path. In effect, ‘child::’ is
the default, so the location path

 Is an abbreviation of:

 There is also an abbreviation for attributes; attribute::
can be abbreviated to @

 Instead of referring to attribute::type in a location
path we could use the abbreviated form @type

/policy-claims/policy/policy-holder

/child::policy-claims/child::policy/child::policy-holder

© Cengage Learning
2008 - 2010

15

XPath Operators

Operator Meaning

/ Child operator. Selects children of whatever is to the left of it. If there is
nothing to the left, it starts at the root element. In XPath a ‘child’ is an
immediate child (e.g. grandchildren are not children)

// Stands for any number of intermediate elements, to express ancestor -
descendant relationships

. The current context (the current node)

.. The parent of the current node

* Wildcard. Matches all elements

@ Distinguishes attributes from elements (attribute prefix)

© Cengage Learning
2008 - 2010

16

Example – Policy Claims
<?xml version="1.0"?>
<policy-claims xmlns:xsi=… >
 <policy type="contents">
 <policy-holder>A. Liu</policy-holder>
 <claims>
 <claim>
 <year>2002</year>
 <details>Stolen TV</details>
 </claim>
 </claims>
 </policy>
 <policy type="contents">
 <policy-holder>B. Singh</policy-holder>
 </policy> <policy type="buildings">
 <policy-holder>C. Jones</policy-holder>
 <claims>
 <claim>
 <year>2004</year>
 <details>Fire damage to Kitchen</details>
 </claim>
 </claims>
 </policy>

<policy type="contents">
 <policy-holder>D. Umaga
 </policy-holder>
 <claims>
 <claim>
 <year>1998</year>
 <details>Stolen bike</details>
 </claim>
 <claim>
 <year>2005</year>
 <details>Dropped Ming Vase
 </details>
 </claim>
 </claims>
 </policy>
 <policy type="buildings">
 <policy-holder>E. Tolstoy
 </policy-holder>
 </policy>
</policy-claims>

policy-claims.xml

© Cengage Learning
2008 - 2010

17

Testing XPath In XML Spy

 XML Spy has an interactive XPath tool
– Choose the XPath tab on the output window
– Type your XPath queries into the text box

and the result will be evaluated dynamically

© Cengage Learning
2008 - 2010

18

Accessing Child Nodes

 One approach is to use a series of ‘child’
operators to specify the full path through the
document, e.g.

 The resulting nodes would therefore be the
five policy holders.

/policy-claims/policy/policy-holder

© Cengage Learning
2008 - 2010

19

Accessing Descendents

 // selects an element without specifying the full path.
 Using the wildcard character (*) matches all the sub-elements beneath

the selected nodes.
 This expression, which uses both the ‘//’ operator and the wildcard, will

return all the ‘year’ and ‘details’ elements’

 These would be the resulting nodes (note they are returned in the
document order)

Year - 2002
Details - Stolen TV
Year - 2004
Details - Fire damage to Kitchen
Year - 1998
Details - Stolen bike
Year - 2005
Details - Dropped Ming Vase

//claim/*

© Cengage Learning
2008 - 2010

20

Filtering

 Searching for specific elements, attributes or values.
 XPath filter patterns use square brackets and evaluate to a

Boolean value

 Matches only policy elements that contain at least one ‘claims’
element child, in the case of our example document returning
the first three ‘policy’ nodes.

 We can also query the data, e.g.

 This would select only one of the ‘claim’ nodes in our
document.

 There is also the usual set of relational operators (>, <, >=, <=)
and the ‘!=’ symbol for ‘not equals’, that work with numeric data.

/policy-claims/policy[claims]

//claim[year = 2002]

© Cengage Learning
2008 - 2010

21

Attributes In XPath Queries

 Attributes and elements are treated in a similar way
– Only difference is the use of the ‘@’ symbol.

 The following expression will return the attribute
‘type’ nodes that have the value ‘contents’

 If ‘type’ had been an element, then the expression
would be identical except for not including the ‘@’.

 Here, we use the query to select buildings policies
that have claims made against them

/policy-claims/policy[@type = "contents"]

/policy-claims/policy[@type = "buildings"][claims]

© Cengage Learning
2008 - 2010

22

eXtensible Stylesheet Language
Transformations (XSLT)

 XSLT can be used to generate web pages from XML
documents.

 XSLT is part of the Extensible Stylesheet Language (XSL), a
set of standards for XML document transformation and
presentation.

 It consists of three parts; XSLT, XPath and XSL-FO
– XSL Transformations (XSLT)

 can transform XML documents into various types of other document
– XML Path (XPath)

 an expression language that can select certain parts of an XML
document.

– XSL Formatting Objects (XSL-FO)
 a way of formatting XML in presentational formats other than markup,

e.g. PDF (Portable Document Format)

© Cengage Learning
2008 - 2010

23

XSLT, HTML and CSS

 Although XSL refers to stylesheets, it does
not replace CSS
– XSLT, HTML and CSS are complementary

XSL

XPath

XSLT XML

CSS(X)HTML

uses

transforms

transformed
into

presents

© Cengage Learning
2008 - 2010

24

Processing XSLT

 An XSLT stylesheet, or transform, consists of a number of
aspects.

 XPath is used to identify content from the input document that
will be included in the output document.

 There will also be other parts of the transform that are meant to
be used directly in the output document, for example (X)HTML
tags.

 XSLT uses template matching to process different parts of the
input document in different ways

– Nodes that match the template’s XPath expression are included in
the output document.

© Cengage Learning
2008 - 2010

25

XSL Namespace

 The first element of an XSL document
consists of a version number (1.0 or 2.0) and
a namespace reference
– The usual prefix for the XSLT namespace is ‘xsl’:

– The namespace reference is a good example of a
URN. It does not represent a downloadable
resource. However if you put the URN into a
browser it identifies its purpose.

<elementname version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
…
</elementname>

© Cengage Learning
2008 - 2010

26

Stylesheets and Transforms

 The root element for an XSL transform can
be either <xsl:stylesheet…>

 or <xsl:transform…>

 Both mean exactly the same thing
– The ‘xsl’ can also be replaced by something else,

but is the usual naming convention

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >

<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >

© Cengage Learning
2008 - 2010

27

Template Matching

 An XSL transform contains one or more
<xsl:template…> elements

 <xsl:template…> elements have a ‘match’
attribute, the value of which is an XPath
expression

 This expression must match something in the
XML document being processed

<xsl:template match=″XPath expression″>

© Cengage Learning
2008 - 2010

28

The Template Element

 The body of the template element defines
what is to be sent to the output document if
the element is matched
– This can be a combination of XML from the

document and other markup
<xsl:template match="XPath expression">
… specify what goes to the output document here
… this may be markup, and/or XSLT elements that
… process the input XML document
</xsl:template>

© Cengage Learning
2008 - 2010

29

Combining XML and XHTML Markup

XHTML
<html>
<markup>
<..>
<markup>
<..>
<markup>
</html>

XML
<..>
<..>
<..>
<..>

XSLT
<html>
<markup>
<template match=”XPath expression”>
output expression
<markup>
<template match=”XPath expression”>
output expression
<markup>
</html>

Content copied from
XML

(b)(a)

© Cengage Learning
2008 - 2010

30

Matching elements

 The ‘match’ attribute of an ‘xsl:template’ start tag
must contain a valid XPath expression.

– To apply a template to the root element, for example, the
value of the ‘match’ attribute is the XPath expression for the
root element, which is ‘/’

– Another example from the ‘policy-claims.xml’ document
might match the ‘policy’ node, again using standard XPath

<xsl:template match="/">
… define the transform for the root element here
</xsl:template>

<xsl:template match="/policy-claims/policy">
… define the transform for the policy element here
</xsl:template>

© Cengage Learning
2008 - 2010

31

Output Types

 XSL Transformations can generate output using three different
methods:

– xml, html or text
 The method can be specified by using the ‘method’ attribute of

the ‘xsl:output’ element

 The default is XML document, so HTML or text must be
specified for those types of output

 However If the first non-XSL child node is <html>, then the
output is automatically HTML instead of XML (not XHTML!).

<xsl:output method="html" version="4.0"/>

<xsl:stylesheet version="1.0“ xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
 <xsl:template match="/">
 <html>

<xsl:output method="xml" version="1.0"/>

© Cengage Learning
2008 - 2010

32

Linking an XSLT Stylesheet

 To link an XSLT to an XML document, we can add
an XML stylesheet processing instruction to the top
of the document

 This can be used in, for example, a browser
– Not all processing applications need this instruction in the

XML - some can apply the transform to the XML externally
– Other stylesheet types can be used as well, for example

CSS

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="policy-claims.xsl"?>

© Cengage Learning
2008 - 2010

33

Selecting Values From the XML

 In XSLT the <xsl:value-of..> element is used to
select element or attribute values from the source
document

 The ‘select’ attribute contains an XPath expression

 The value returned from the XPath expression is
inserted into the output document

 A single ‘xsl:value-of’ element will only match a
single node from the source document, which will be
the first one that it matches in the document order.

<xsl:value-of select="XPath expression"/>

© Cengage Learning
2008 - 2010

34

xsl:value-of (element)

 In this example, the value of the (first) policy-
holder element is selected

<?xml version="1.0"?>
<xsl:stylesheet version="1.0“ xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <HTML>
 <HEAD>
 <TITLE>Insurance Claims</TITLE>
 </HEAD>
 <BODY>
 <H1>Claimants</H1>
 <H2>
 <xsl:value-of select="//policy-holder"/>
 </H2>
 </BODY>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

xsl:value-of, which uses the value of
the element

an XPath expression

Example6-1.xsl

© Cengage Learning
2008 - 2010

35

Resulting Document

 The result of the transformation in XMLSpy
is:

<HTML>
 <HEAD>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-16">
 <TITLE>Insurance Claims</TITLE>
 </HEAD>
 <BODY>
 <H1>Claimants</H1>
 <H2>A. Liu</H2>
 </BODY>
</HTML>

This was the value
of the first matching
element

© Cengage Learning
2008 - 2010

36

Selecting Attributes

 ‘xsl:value-of’ can be used to select either
element or attribute values

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<HTML>
 <HEAD>
 <TITLE>Insurance Claims</TITLE>
 </HEAD>
 <BODY>
 <H1> Claimants and policy types </H1>
 <H2>
 Name: <xsl:value-of select="policy-claims/policy/policy-holder"/>

 Policy type: <xsl:value-of select="policy-claims/policy/@type"/>
 </H2>
 </BODY>
</HTML>

element

Note XHTML tag –
what happens?

attribute

Example6-2.xsl

© Cengage Learning
2008 - 2010

37

HTML Tag Output

 The HTML output is not XHTML
– The
 tag is converted into ‘legacy’ html

<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=UTF-16">
<TITLE>Insurance Claims</TITLE>
</HEAD>
<BODY>
 <H1> Claimants and policy types </H1>
 <H2>
 Name: A. Liu

 Policy type: contents
 </H2>
</BODY>
</HTML>

© Cengage Learning
2008 - 2010

38

Generating XHTML

 We can generate XHTML by setting the
output method to ‘xml’ and adding public and
system doctypes
– Tags also need to be XHTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"
 doctype-public="-//W3C//DTD XHTML 1.1//EN"
 doctype-system=" http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd "/>
 <xsl:template match="/">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head> Example6-3.xsl

© Cengage Learning
2008 - 2010

39

Modified Resulting Document

 The result of the modified transformation is
an XHTML document:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.1//EN“
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Insurance Claims</title>
 </head>
 <body>
 <h1> Claimants and policy types </h1>
 <h2> Name: A. Liu

 Policy type: contents
 </h2>
 </body>
</html>

Main changes
to document

© Cengage Learning
2008 - 2010

40

Iteration With <xsl:for-each…>

 So far, we have only been getting the first
match from each <xsl:valueof…> element

 The <xsl:for-each…> element enables us to
iterate over all the matching nodes in the
XML document
– Like <xsl:valueof…>, its ‘select’ attribute uses an

XPath expression to find all the matching nodes

© Cengage Learning
2008 - 2010

41

Iteration Example

 Here, the <xsl:for-each…> element selects
all the policy nodes
<body>
 <h1>Claimants and policy types</h1>
 <xsl:for-each select="policy-claims/policy">
 <h2>Name: <xsl:value-of select="policy-holder"/>,
 Policy type: <xsl:value-of select="@type"/>
 </h2>
 </xsl:for-each>
 </h2>
</body>

These XPath expressions are
relative to the policy node

Example6-4.xsl

© Cengage Learning
2008 - 2010

42

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Insurance Claims</title>
 </head>
 <body>
 <h1>Claimants and policy types</h1>
 <h2>Name: A. Liu, Policy type: contents</h2>
 <h2>Name: B. Singh, Policy type: contents</h2>
 <h2>Name: C. Jones, Policy type: buildings</h2>
 <h2>Name: D. Umaga, Policy type: contents</h2>
 <h2>Name: E. Tolstoy, Policy type: buildings</h2>
 </body>
</html>

Iteration Example Output

© Cengage Learning
2008 - 2010

43

Selection With <xsl:if…>

 We can use <xsl:if..> to conditionally include
elements or attributes in the output document

 The ‘test’ attribute contains a conditional
XPath expression
<xsl:if test="XPath expression">

…

</xsl:if>

© Cengage Learning
2008 - 2010

44

<xsl:if…> example

 In this example, we add a condition to our
iteration that only selects policies with claims
since 2003
<xsl:for-each select="policy-claims/policy">
 <xsl:if test="claims/claim[year > 2003]">
 Name: <xsl:value-of select="policy-holder"/>,

 Claim dates:
 <xsl:for-each select="claims/claim">
 <xsl:value-of select="year"/>,
 </xsl:for-each>
 <hr/>
 </xsl:if>
</xsl:for-each>

Example6-5.xsl

© Cengage Learning
2008 - 2010

45

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head> <title>Insurance Claims</title> </head>
 <body>
 <h1>Claimants since 2003</h1>
 <h2>
 Name: C. Jones,

 Claim dates:2004,
 </h2>
 <hr />
 <h2>Name: D. Umaga,

 Claim dates:1998,2005,
 </h2>
 <hr />
 </body>
</html>

Example Output

© Cengage Learning
2008 - 2010

46

Alternative Actions

 There is no alternative action that can be
specified with <xsl:if…>

 To provide an alternative we must use
choose, when and otherwise

<xsl:choose>
 <xsl:when test=“XPath selection expression">
 Action for all selected nodes
 </xsl:when>
 <xsl:otherwise>
 Action for all other nodes
 </xsl:otherwise>
</xsl:choose>

© Cengage Learning
2008 - 2010

47

<xsl:choose> example

 Here we display a message that indicates if a
customer has recent claims or not
<xsl:for-each select="policy-claims/policy">
 <xsl:choose>
 <xsl:when test="claims/claim[year > 2003]">
 customer has recent claims

 Claim dates:
 <xsl:for-each select="claims/claim">
 <xsl:value-of select="year"/>,
 </xsl:for-each>

 </xsl:when>
 <xsl:otherwise>
 customer has no recent claims

 </xsl:otherwise>
 </xsl:choose>
 Name: <xsl:value-of select="policy-holder"/>,
 Policy type: <xsl:value-of select="@type"/> <hr/>
</xsl:for-each>

Example6-6.xsl

© Cengage Learning
2008 - 2010

48

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head> <title>Insurance Claims</title> </head>
 <body>
 <h1>Claimant History</h1>
 <h2> customer has no recent claims

 Name: A. Liu, Policy type: contents</h2> <hr />
 <h2> customer has no recent claims

 Name: B. Singh, Policy type: contents</h2> <hr />
 <h2> customer has recent claims

 Claim dates:2004,

 Name: C. Jones, Policy type: buildings</h2> <hr />
 <h2> customer has recent claims

 Claim dates:1998,2005,

 Name: D. Umaga, Policy type: contents</h2> <hr />
 <h2> customer has no recent claims

 Name: E. Tolstoy, Policy type: buildings</h2> <hr />
 </body>
</html>

Example Output

© Cengage Learning
2008 - 2010

49

Sorting with <xsl:sort>

 <xsl:sort> has several attributes
 select

– The XPath expression that identifies the sort key
 data-type

– States whether the sort key is ‘text’ or a ‘number’
 order

– Determines the sort order. Can be 'ascending' or
'descending',

 case-order
– For text sorting. Determines which case is sorted first. Can

be ‘upper-first’ or ‘lower-first’

© Cengage Learning
2008 - 2010

50

Sorting with <xsl:sort>

 <xsl:sort> can appear either as a child of an
<xsl:apply-templates> element (described later) or
an <xsl:for-each> element

– If it is a child of a <xsl:for-each>, it must be the first child

 If using more than one <xsl:sort> in a single node,
the primary sort key is given by the first <xsl:sort>
instruction, the secondary key by the second and so
on.

© Cengage Learning
2008 - 2010

51

Sorting Example

• Here, we sort the resulting nodes according
to the alphabetical order of their insurance
‘type’ attribute

<xsl:for-each select="policy-claims/policy">
 <xsl:sort select="@type" data-type="text" order="ascending"/>
 <p>
 Name: <xsl:value-of select="policy-holder"/>,
 Policy type: <xsl:value-of select="@type"/>
 </p>
</xsl:for-each>

Example6-7.xsl

© Cengage Learning
2008 - 2010

52

<?xml version="1.0" encoding="UTF-16"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Insurance Claims</title>
 </head>
 <body>
 <h1>Claimants and policy types</h1>
 <p>Name: C. Jones, Policy type: buildings</p>
 <p>Name: E. Tolstoy, Policy type: buildings</p>
 <p>Name: A. Liu, Policy type: contents</p>
 <p>Name: B. Singh, Policy type: contents</p>
 <p>Name: D. Umaga, Policy type: contents</p>
 </body>
</html>

Sorted Output Document

‘buildings’ policies
appear before
‘contents’ policies

© Cengage Learning
2008 - 2010

53

Writing Attributes to the Output
Document

 Attributes can be written using ‘xsl:attribute’
elements
– e.g. to add a ‘class’ attribute to a paragraph

 This element can be combined with an
‘xsl:value-of’ element to supply the attribute
value

<p><xsl:attribute name="class"> …

<p>
 <xsl:attribute name="class">
 <xsl:value-of select ="@type"/>
 </xsl:attribute>
</p>

Example6-8.xsl

© Cengage Learning
2008 - 2010

54

Generated Markup

 The ‘class’ attribute is added to each
paragraph, in each case given with the value
of a ‘type’ attribute from the XML input
document:

 CSS could then be applied

<p class="contents">Name: A. Liu</p>
<p class="contents">Name: B. Singh</p>
<p class="buildings">Name: C. Jones</p>
<p class="contents">Name: D. Umaga</p>
<p class="buildings">Name: E. Tolstoy</p>

.contents{color:white; background-color:black}

.buildings{color:black; background-color:white}

© Cengage Learning
2008 - 2010

55

Other Attribute Examples

 Other non-presentational attributes that might
come from an XML transform include
anchors and image files
<xsl:when test="@type='contents' ">

 <xsl:attribute name="src">
 <xsl:value-of select="/policy-claims/contents-image/" />
 </xsl:attribute>
 <xsl:attribute name="alt">
 contents
 </xsl:attribute>

<a>
 <xsl:attribute name="href">
 <xsl:value-of select="policy-claims/company-domain"/>
 </xsl:attribute>Company home page

Example6-9.xsl

© Cengage Learning
2008 - 2010

56

XML Special Characters

 In HTML we can use special entity
characters such as:
– for a non breaking space
– © for a copyright symbol (©)

 These are not recognised in XML so cannot
be used in XSL Transformations

 We have to use their number codes instead
– for a non breaking space
– © for a copyright symbol (©)

© Cengage Learning
2008 - 2010

57

Using a Special Character

 In this anchor element we add the copyright
symbol to the hyperlink text

<a>
 <xsl:attribute name="href">
 <xsl:value-of select="policy-claims/company-domain"/>
 </xsl:attribute>
 ©WebHomeCover

© Cengage Learning
2008 - 2010

58

Some Special Character Codes

 ! Exclamation mark !
 " Quotation mark "
 # Number sign #
 $ Dollar sign $
 % Percent sign %
 & Ampersand &
 ' Apostrophe '
 (Left parenthesis (
) Right parenthesis)
 * Asterisk *
 + Plus sign +
 , Comma ,
 - Hyphen -
 . Period (full stop) .

 : Colon :
 ; Semi-colon ;
 < Less than <
 = Equals sign =
 > Greater than >
 ? Question mark ?
 @ Commercial at @
 [Left square bracket [
] Right square bracket]
 Non-breaking Space
 ¢ Cent sign ¢
 £ Pound sterling £
 © Copyright ©
 ® Registered trademark ®

© Cengage Learning
2008 - 2010

59

Character Encoding

 The problem is that the numbers may be
interpreted differently depending on the
character encoding being used

 Since XML defaults to utf-8, we can specify
this in a meta element of a generated
document

<head>
 <meta http-equiv="Content-Type" content="text/html" charset="utf-8" />
</head>

© Cengage Learning
2008 - 2010

60

Transform Encoding

 You can set the encoding of the generated
document to something else, but you must
match it in the META element

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" encoding="ISO-8859-1"
doctype-public="'-//W3C//DTD XHTML 1.1//EN"
doctype-system="http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"/>
<xsl:template match="/">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html" charset="ISO-8859-1" />
<title>…</title>
</head>

ISO-8859-1 is a ‘legacy’
encoding for HTML pages

© Cengage Learning
2008 - 2010

61

UTF-8

 Best option is to always use UTF-8
<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" encoding="utf-8"
doctype-public="'-//W3C//DTD XHTML 1.1//EN"
doctype-system="http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"/>
<xsl:template match="/">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html" charset="utf-8" />
<title>…</title>
</head>

© Cengage Learning
2008 - 2010

62

Transforming From XML to XML

 The examples we have seen so far have been from
XML to (X)HTML

 We may also want to transform one XML document
into another

 In this case we may want to keep whole XML
elements from the source document

 To include parts of the source document as the
original XML (rather than as the text values of
elements or attributes), use the <xsl:copy-of…>
element

© Cengage Learning
2008 - 2010

63

<xsl:copy-of…>

 This XSLT stylesheet copies XML elements:

 The XPath expression selects policy holders
 The full <policy-holder> element of each one

(including tags) will be copied to the output
document

<?xml version="1.0"?>
<policy-holders xsl:version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:copy-of select="/policy-claims/policy/policy-holder"/>
</policy-holders>

Example6-10.xsl

© Cengage Learning
2008 - 2010

64

Output XML Document

<?xml version="1.0"?>
<policy-holders>
 <policy-holder>A. Liu</policy-holder>
 <policy-holder>B. Singh</policy-holder>
 <policy-holder>C. Jones</policy-holder>
 <policy-holder>D. Umaga</policy-holder>
 <policy-holder>E. Tolstoy</policy-holder>
</policy-holders>

© Cengage Learning
2008 - 2010

65

Transforms Using Template
Matching

 XLST can do two different types of transformation
– Output driven (pull)
– Input-driven (push)

 So far all our examples have been output-driven
– Style sheets based on the structure of the output document
– Using sequence, selection and iteration from the root

 An input driven approach applies ‘template rules’ to
particular elements

– More flexible for semi structured data

© Cengage Learning
2008 - 2010

66

Pull and Push Transformations

Input
document

Output
document

Input
document

Output
document

Sequence
,
Selection,
Iteration

Template
rules

Output driven (pull)

Input driven (push)

© Cengage Learning
2008 - 2010

67

Example

 We might provide an XSL transformation for
a document by template matching several
different nodes:
– <xsl:template match="/">
– <xsl:template match="heading">
– <xsl:template match="subheading">
– <xsl:template match="paragraph">

 Each node will have its own transform

© Cengage Learning
2008 - 2010

68

document.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="Example6-11.xsl"?>
<document>
 <heading>My first heading</heading>
 <subheading>My first subheading</subheading>
 <paragraph>Para 1</paragraph>
 <paragraph>Para 2</paragraph>
 <heading>My second heading</heading>
 <subheading>My second subheading</subheading>
 <paragraph>Para 3</paragraph>
 <subheading>My third subheading</subheading>
 <paragraph>Para 4</paragraph>
…etc..
</document>

© Cengage Learning
2008 - 2010

69

Template Matching

 This is a ‘push’ transformation.
– Instead of imposing the overall structure, we

respond to template matches in the input
document

 <xsl:template match="document/paragraph">
 <p><xsl:value-of select="."/></p>
 </xsl:template>
 <xsl:template match="subheading">
 <h2><xsl:value-of select="."/></h2>
 </xsl:template>
 <xsl:template match="heading">
 <h1><xsl:value-of select="."/></h1>
 </xsl:template>

Example6-11.xsl

© Cengage Learning
2008 - 2010

70

Invoking Other Templates

 From one template, we can apply other
templates to other nodes

– This will insert output from other template
matches at that point in the output document

 By default, all children of the current node will
have templates applied, but we can specify
individual nodes using the ‘select’ attribute

<xsl:apply-templates/>

<xsl:apply-templates select="policies/policy"/>

© Cengage Learning
2008 - 2010

71

Example Template Matching (1)

 Root template

 Policy template

 <xsl:template match="/">
…XHTML markup
 <xsl:apply-templates select="policy-claims/policy"/>
…XHTML markup
 </xsl:template>

Ignore other child nodes

<xsl:template match="policy">
…XHTML markup
<xsl:apply-templates select="claims"/>
</xsl:template>

Ignore other child nodes
(do not apply a template
to ‘policy-holder’)

Example6-12.xsl

© Cengage Learning
2008 - 2010

72

Example Template Matching (2)

 Claims template

 Claim template

<xsl:template match="claims">
…XHTML markup
 <xsl:apply-templates/>
…XHTML markup
</xsl:template>

Process all child nodes. The
only child of ‘claims’ is ‘claim’

<xsl:template match="claim">
…XHTML markup
</xsl:template>

No ‘apply-templates’, so no
processing for the child nodes
‘year’ and ‘details’

© Cengage Learning
2008 - 2010

73

Chapter Summary

 XPath expressions
– Picking out parts of an XML documents

 XSLT for transforming documents from one
(type) to another

 Transforming XML into HTML and XHTML
 Transforming XML into XML
 Input-driven and output driven

transformations

	Dynamic Web Application Development using XML and Java by David Parsons
	Learning Objectives
	XPath: Querying XML
	XPath And XML Trees
	Example XML Document
	Slide 6
	XML Document As A Tree
	‘Family Tree’ Vocabulary
	Document Order
	XPath Expressions and the Document Order
	The Context – The Starting Point of an XPath Expression
	Location Paths
	Slide 13
	Abbreviated syntax
	XPath Operators
	Example – Policy Claims
	Testing XPath In XML Spy
	Accessing Child Nodes
	Accessing Descendents
	Filtering
	Attributes In XPath Queries
	eXtensible Stylesheet Language Transformations (XSLT)
	XSLT, HTML and CSS
	Processing XSLT
	XSL Namespace
	Stylesheets and Transforms
	Template Matching
	The Template Element
	Combining XML and XHTML Markup
	Matching elements
	Output Types
	Linking an XSLT Stylesheet
	Selecting Values From the XML
	xsl:value-of (element)
	Resulting Document
	Selecting Attributes
	HTML Tag Output
	Generating XHTML
	Modified Resulting Document
	Iteration With <xsl:for-each…>
	Iteration Example
	Iteration Example Output
	Selection With <xsl:if…>
	<xsl:if…> example
	Example Output
	Alternative Actions
	<xsl:choose> example
	Slide 48
	Sorting with <xsl:sort>
	Slide 50
	Sorting Example
	Sorted Output Document
	Writing Attributes to the Output Document
	Generated Markup
	Other Attribute Examples
	XML Special Characters
	Using a Special Character
	Some Special Character Codes
	Character Encoding
	Transform Encoding
	UTF-8
	Transforming From XML to XML
	<xsl:copy-of…>
	Output XML Document
	Transforms Using Template Matching
	Pull and Push Transformations
	Example
	document.xml
	Slide 69
	Invoking Other Templates
	Example Template Matching (1)
	Example Template Matching (2)
	Chapter Summary

